Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation

نویسندگان

  • Georgij Bispen
  • Mária Lukácová-Medvid'ová
  • Leonid Yelash
چکیده

In this paper we will present and analyse a new class of the IMEX finite volume schemes for the Euler equations with a gravity source term. We will in particular concentrate on a singular limit of weakly compressible flows when the Mach number M ≪ 1. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravity waves and a non-stiff nonlinear part that models nonlinear advection effects. For time discretization we use a special class of the so-called globally stiffly accurate IMEX schemes and approximate the stiff linear operator implicitly and the non-stiff nonlinear operator explicitly. For spatial discretization the finite volume approximation is used with the central and Rusanov/Lax-Friedrichs numerical fluxes for the linear and nonlinear subsystem, respectively. In the case of a constant background potential temperature we prove theoretically that the method is asymptotically consistent and asymptotically stable uniformly with respect to small Mach number. We also analyse experimentally convergence rates in the singular limit when the Mach number tends to zero.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics

We propose a low Mach number, Godunov-type finite volume scheme for the numerical solution of the compressible Euler equations of gas dynamics. The scheme combines Klein’s non-stiff/stiff decomposition of the fluxes (J. Comput. Phys. 121:213-237, 1995) with an explicit/implicit time discretization (Cordier et al., J. Comput. Phys. 231:56855704, 2012) for the split fluxes. This results in a scal...

متن کامل

Flux Splitting for Stiff Equations: A Notion on Stability

For low Mach number flows, there is a strong recent interest in the development and analysis of IMEX (implicit/explicit) schemes, which rely on a splitting of the convective flux into stiff and nonstiff parts. A key ingredient of the analysis is the so-called Asymptotic Preserving (AP) property, which guarantees uniform consistency and stability as the Mach number goes to zero. While many autho...

متن کامل

Imex Finite Volume Evolution Galerkin Scheme for Three-dimensional Weakly Compressible Flows.∗

In this paper we will derive an implicit-explicit (IMEX) finite volume evolution Galerkin scheme for three-dimensional Euler equations. We will in particular concentrate a singular limit of weakly compressible flows when the Mach number is about O(10−2)−O(10−6). In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gr...

متن کامل

Flux Splitting: A Notion on Stability

In the context of low Mach number flows, successful methods are Asymptotic Preserving and IMEX schemes. Both schemes for hyperbolic equations rely on a splitting of the convective flux into stiff and nonstiff parts. This choice is not arbitrary and has an influence on both the stability and the accuracy of the resulting methods. In this work, we consider a first-order IMEX scheme based on diffe...

متن کامل

Asymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equation∗

We develop a family of second-order implicit-explicit (IMEX) schemes for the stiff BGK kinetic equation. The method is asymptotic-preserving (can capture the Euler limit without numerically resolving the small Knudsen number) as well as positivity-preserving — a feature that is not possessed by any of the existing second or high order IMEX schemes. The method is based on the usual IMEX Runge-Ku...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 335  شماره 

صفحات  -

تاریخ انتشار 2017